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Abstract. Motivated by the problem to improve Minkowski’s lower
bound on the successive minima for the class of zonotopes we determine
the minimal volume of a zonotope containing the standard crosspoly-
tope. It turns out that this volume can be expressed via the maximal
determinant of a ±1-matrix, and that in each dimension the set of min-
imal zonotopes contains a parallelepiped. Based on that link to ±1-
matrices, we characterize all zonotopes attaining the minimal volume in
dimension 3 and present related results in higher dimensions.

1. Introduction

Let Rn be the n-dimensional Euclidean space and let Zn be the integral
lattice. The set of all 0-symmetric convex bodies, i.e., compact, convex
sets, which are symmetric with respect to the origin is denoted by Kn0 .
Minkowski’s second theorem on the successive minima of a body K ∈ Kn0
states that [5, pp. 376]

(1.1)
2n

n!

n∏
i=1

1
λi(K)

≤ vol (K) ≤ 2n
n∏
i=1

1
λi(K)

,

where vol (K) denotes the volume of K, and λi(K) is the i-th successive
minimum, i.e.,

λi(K) = min{t > 0 : dim(tK ∩ Zn) ≥ i}, 1 ≤ i ≤ n.
In the context of relations between the successive minima and the roots
of the Ehrhart polynomial of a lattice polytope [7], the problem arises to
improve the lower bound for a special class of polytopes, namely zonotopes.
A zonotope is the Minkowski sum of finitely many line segments and can be
characterized by the property that all its two-dimensional faces are centrally-
symmetric. For more properties on zonotopes we refer to the books [3, 13].
In contrast to the upper bound, the lower bound of (1.1) follows easily from
considering a suitable crosspolytope inside the body K. Here we also want
to improve this lower bound for the class of zonotopes and as a corollary of
our main result we get:

Corollary 1.1. Let Z ⊂ Rn be a zonotope. Then

2n

nn/2

n∏
i=1

1
λi(Z)

≤ vol (Z).
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Observe, that this bound is, roughly speaking, (
√
n)n−1 larger than the one

given in (1.1). For the proof we have to answer the question:

What is the minimal volume of a zonotope containing

the standard crosspolytope C?n = conv(±ei : i = 1, . . . , n)?

Here ei denotes the i-th coordinate unit vector. In order to present the
answer we have to introduce maximal determinants of ±1-matrices. We
define for every dimension n

maxdet(n) = max{|det(M)| : M (n× n)-matrix with entries± 1}.

Obviously, maxdet(n) ≤ nn/2 and the well known Hadamard conjecture
states that

maxdet(4m) = (4m)2m.

The conjecture is known to be true for all m ≤ 166, but in general not much
is known about maxdet(n) (cf. [10] for more information).
We will show the following relation between maxdet(n) and minimal volume
C?n containing zonotopes.

Theorem 1.2. Let Z ⊂ Rn be a zonotope containing C?n. Then

vol (Z) ≥ vol (C?n)
n!

maxdet(n)
.

Moreover, among all zonotopes of minimal volume containing C?n there exists
always a parallelepiped.

The proof of this theorem as well as of Corollary 1.1 will be given in the
next section.
Unfortunately, we can not classify all zonotopes having minimal volume in
all dimensions. In general, we will show that such a polytope has at most
2n−1 generators (cf. Lemma 2.5), and in dimension 3 we will give a complete
answer to that problem. To this end we denote for an (n × m)-matrix
A = (a1, . . . , am), ai ∈ Rn, by Z(A) =

∑m
j=1[−aj , aj ] the 0-symmetric

zonotope symmetrically generated by the m column vectors ai of the matrix
A. Here [x, y] denotes the convex hull of x, y ∈ Rn.
In Section 3 we show the following characterization of minimal volume zono-
topes containing C?3 .

Theorem 1.3. The set of 3-dimensional minimal volume zonotopes con-
taining the crosspolytope isZ

 −t1 1/2− t1 1/2− t1 t1
1/2− t2 −t2 1/2− t2 t2
1/2− t3 1/2− t3 −t3 t3

 : (t1, t2, t3)> ∈ T

 ,
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where T is the 3-dimensional simplex

T = conv


0

0
0

 ,

1/2
1/2
0

 ,

 0
1/2
1/2

 ,

1/2
0

1/2

 .

For a ”visualisation” of this theorem, we refer to Section 3. Regarding the
approximation of C?n by zonoids, i.e., bodies which can can arbitrarly well
approximated by zonotopes, Rolf Schneider [14] posed the following related
problem:

Problem 1.4. For which zonoids Z is the factor λ with C?n ⊆ Z ⊆ λC?n
minimal?

He proved a general lower bound on such a λ which in dimension 3 becomes
3
2 . By analyzing the zonotopes of Theorem 1.3 we found out that only the
rhombic dodecahedron is a minimal volume zonotope containing C?3 as well
as a solution to Schneider’s Problem in dimension 3 (cf. Proposition (3.2)).
In dimensions ≥ 4 we conjecture that only parallelepipeds are minimal vol-
ume zonotopes containing C?n, i.e.,

Conjecture 1.5. Let n ≥ 4 and let Z be a zonotope of minimal volume
containing C?n. Then Z is a parallelepiped.

In Lemma 4.4 we will give a sufficient criterion which implies the conjecture
above. This criterion allows us to show that Conjecture 1.5 is true in di-
mensions n where the Hadamard conjecture is true (Corollary 4.5), and we
also use it for verifying computationally the conjecture in dimensions 4 to
18, 20 and 21 (Proposition 4.6).
For similar questions regarding the approximation of arbitrary convex bodies
by zonotopes or parallelepipeds we refer to [1], [6], [8], [9], [11].

2. Minimal zonotopes and successive minima

First we observe that such a minimal volume zonotope has to be indeed
symmetric with respect to the origin:

Proposition 2.1. Let K ⊂ Rn be 0-symmetric. Every minimal volume
zonotope containing K is 0-symmetric as well.

Proof. Let Z = s+
∑m

j=1[−aj , aj ], m ≥ n, s, a1, . . . , am ∈ Rn, be a minimal
volume zonotope containing K and let Z0 :=

∑m
j=1[−aj , aj ]. So we know

K ⊆ s + Z0, and we have to show that in the case s 6= 0 there exists a
zonotope containing K of smaller volume.
To this end we may assume s = en and let γ := max{xn : x ∈ K}, i.e.,
γ is the maximal last coordinate of a point in K. By the 0-symmetry of
K and Z0 we know that ±en + K ⊆ Z0. Hence for any point x ∈ K we
have [−en + x, x + en] ⊂ Z0 and thus M(γ)x ∈ Z0, where M(γ) is the
(n× n)-diagonal matrix with diagonal entries 1, . . . , 1, 1 + 1

γ . So we have

K ⊆M(γ)−1 Z0,
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and since the right hand side is a zonotope of smaller volume than Z0 we
have the desired contradiction. �

The next proposition mainly shows that all the vertices of C?n can be assumed
to be vertices as well of a minimal volume zonotope. To this end we denote
the vertices of a polytope P by vert(P ).

Proposition 2.2. Let Z be a zonotope of minimal volume containing C?n.
Then there is a linear transformation T with det(T ) = 1 such that C?n ⊆ TZ
and vert(C?n) ⊆ vert(TZ).

Proof. Let k = 1
2# (vert(C?n) \ vert(Z)). We prove this result by induction

with respect to k. If k = 0 we are done. Thus let k > 0. W.l.o.g. let
±e1 /∈ vert(Z). Since Z is of minimal volume, e1 ∈ bd(Z) and let F be
the smallest face of Z containing e1. Then γ := max{x1 : x ∈ F} ≥ 1 and
let v be a vertex with v1 = γ. Define C = conv (±v,±e2, . . . ,±en). Then
1
2# (vert(C) \ vert(Z)) < k and C ⊆ Z. Then for A := (v, e2, . . . , en)−1

we get AC = C?n and det
(
A
)

= 1
γ and thus volAZ ≤ volZ. Since Z is of

minimal volume and C?n ⊆ AZ, we get that det
(
A
)

= 1 and thus γ = 1.
This means that F is contained in {x ∈ Rn : x>e1 = 1} and thus that
Z and AZ have a generator which is orthogonal to e1. Furthermore by
construction C?n has at most 2k − 2 vertices that are not vertices of AZ.
Thus by induction hypothesis there exists a matrix A with det(A) = 1 such
that vert(C?n) ⊆ vert(AAZ). Thus let T = AA. �

Remark 2.3. We want to point out that, if vert(C?n) 6⊆ vert(Z), the trans-
formation T constructed in the proof above is a composition of transforma-
tions which fix n−1 of the coordinate unit vectors and at least one generator
of Z. These generators are orthogonal to the remaining coordinate unit vec-
tor. This means that the zonotope T Z also has at least one generator, which
is orthogonal to a coordinate unit vector.

In the following we consider only such zonotopes, which have all vertices of
C?n as vertices.
In order to simplify the notation we will denote for a matrix A ∈ Rn×m

and a subset I ⊂ {1, . . . ,m} by AI the (n× (#I))-submatrix with columns
indexed by the elements of I in increasing order. Analogously we denote for
I ⊂ {1, . . . , n} by AI the submatrix with rows indexed by elements of I.
Now we come to the proof of Theorem 1.2:

Proof of Theorem 1.2. We can assume that Z =
∑m

j=1[−aj , aj ] for m ≥ n

and a1, . . . , am ∈ Rn by Proposition 2.1. Let A be the (n × m)-matrix
(a1, . . . , am). By Proposition 2.2 we may assume that vert(C?n) ⊆ vert(Z) ⊆
{
∑m

j=1±aj}, i.e., all vertices of C?n can be written as ±1-combinations of
a1, . . . , am. Thus there is a ±1-matrix H such that In = A ·H. This yields
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together with the Cauchy-Binet formula

1 = det(In) = det(A ·H)

=
∑

I⊂{1,...,m},#I=n

det(AI) det(HI)

≤
∑

I⊂{1,...,m},#I=n

| det(AI)||det(HI)|

≤
∑

I⊂{1,...,m},#I=n

| det(AI)|maxdet(n)

= maxdet(n)
1
2n

volZ =
maxdet(n)

n!
vol (Z)
vol (C?n)

.

(2.1)

Obviously, for a ±1-matrix H with det(H) = maxdet(n) and A = H−1 we
get equality. �

Since maxdet(n) ≤ nn/2 the theorem implies

vol (Z) ≥ vol (C∗n)
n!
nn/2

with equality if and only if there exists an (n × n)-Hadamard matrix. We
recall that a Hadamard matrix is an (n× n)-±1-matrix whose columns are
pairwise orthogonal. Hadamard matrices are known to exist in dimensions
which are powers of 2 and as mentioned in the introduction it is conjectured
that they exist in every dimension divisible by 4. The best of our knowledge,
the best known general lower bounds on maxdet(n) are of the type (cf. [2])

maxdet(n) ≥ n
n
2
(1−c/ lnn),

where c is a certain positive constant. We want to remark that a similar
bound follows immediately from Theorem 1.2. Since the unit ball Bn ⊇ C?n
can be arbitrarily well approximated by zonotopes, we get by the theorem
and Stirling’s formula

maxdet(n) ≥ n!
vol (C?n)
vol (Bn)

= 2n
Γ(n/2 + 1)

πn/2
∼

(√
2
π e

)n
nn/2 = n

n
2
(1−c/ lnn),

for a certain positive constant c. Here Γ(·) denotes the Γ-function.
Corollary 1.1 is an immediate consequence of Theorem 1.2:

Proof of Corollary 1.1. Let xi ∈ Zn, 1 ≤ i ≤ n, be linearly independent
vectors such that xi ∈ λi(Z)Z. Then

C := conv
(
± x1

λ1(Z)
, . . . ,± xn

λn(Z)

)
⊂ Z,
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and by Theorem 1.2 we get

vol (Z) ≥ n!
maxdet(n)

vol (C)

=
n!

maxdet(n)
2n

n!

∣∣∣∣det
(

x1

λ1(Z)
, . . . ,

xn
λn(Z)

)∣∣∣∣
≥ 2n

maxdet(n)

n∏
i=1

1
λi(Z)

.

Since maxdet(n) ≤ nn/2 (cf. [10]), the corollary follows. �

Next we want to study the equality case in Theorem 1.2. We recall that
for A = (a1, . . . , am) ∈ Rn×m, Z(A) denotes the zonotope

∑m
j=1[−aj , aj ],

and we are interested in the problem for which n and m does there exist an
(n×m)-matrix A with volZ(A) = 2n

maxdet(n) and C?n ⊆ Z(A).
By Proposition 2.2 we may assume that vert(C?n) ⊆ vert(Z(A)) and thus
there are matrices A = (a1, . . . , am) and H as in the proof of Theorem
1.2, i.e., A · H = In. Furthermore we can assume that no two vectors of
{a1, . . . , am} are linearly dependent, because otherwise we can sum them up
to one generator of the zonotope.

Proposition 2.4. Let A be an (n×m)-matrix such that Z(A) is a minimal
volume zonotope containing C?n and let H be an (m × n)-±1-matrix such
that A ·H = In.

(i) Let I ⊆ {1, . . . ,m} with #I = n. If det(AI) 6= 0 then |det(HI)| =
maxdet(n) and sign(det(HI)) = sign(det(AI)).

(ii) If for some J ⊆ {1, . . . ,m} the rows of HJ are linearly dependent,
then the columns of AJ are linearly dependent as well.

Proof. The equality in the first inequality in (2.1) in the proof of Theorem
1.2 is attained only if sign(det(HI)) = sign(det(AI)) and the equality in
the second inequality in (2.1) is attained only if | det(HI)| = maxdet(n)
for all I such that det(AI) 6= 0. Thus we get part (i). For part (ii) we
may assume J = {1, . . . , k} and k < n. From part (i) we conclude that
det(AI) = 0 for all I such that J ⊆ I. Now assume that the columns of AJ
are linearly independent. Since the rank of A is n we can find an index set
I? ⊇ J such that the columns of AI? are linearly independent, which is a
contradiction. �

By Proposition 2.4 we may assume that a matrix H of a minimal volume
zonotope cannot have two linearly dependent rows, because otherwise the
two generators of Z are linearly dependent. Hence H cannot have more
than 2n−1 rows and thus

Lemma 2.5. Let Z be a minimal volume zonotope containing C?n. Then Z
has at most 2n−1 pairwise linearly independent generators.
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3. Dimension 3

The pictures in this section are made by polymake [4] and JavaView [12].
The aim of this section is to prove and explain Theorem 1.3. We call two
±1-matrices equivalent if one can be obtained from the other by a series
of permutations and negations of rows and columns. Let A and H be as
above. Negating a column of H coincides with negating a row of A, which
corresponds to a reflexion of Z(A) with respect to a coordinate hyperplane.
Negating a row of H coincides with negating a column of A which does
not change Z(A) at all. Interchanging two columns of H coincides with
interchanging two rows of A, which corresponds to a reflexion of Z(A) with
respect to a hyperplane of the form {x ∈ Rn : xi − xj = 0}, which does not
change the 3-dimensional crosspolytope. Interchanging two rows of H does
not change Z(A) at all.

Proof of Theorem 1.3. First we just consider inequivalent matrices H. By
Lemma 2.5 we can only have 3 or 4 generators. First we consider the
case m = 3. In this case H is a quadratic ±1-matrix with maximal de-
terminant. Up to equivalence, the maximal determinant (3× 3)-±1-matrix

H =

−1 1 1
1 −1 1
1 1 −1

 is unique (cf. [10]). The corresponding matrix of

generators A is A = H−1 =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 and the maximal determi-

nant is maxdet(3) = 4.
Now we consider the case m = 4 and we assume that A does not have two
linearly dependent columns. By Proposition 2.4, H cannot have two linearly
dependent rows. Thus we can choose 4 of the 8 possible ±1-vectors in such
a way that no two opposite vectors are chosen. Hence also in this case H
needs to be unique up to equivalence, namely

H =


−1 1 1
1 −1 1
1 1 −1
1 1 1

 .

Then we can solve the linear system A ·H = I3 and get solutions

A(t) =

 −t1 1/2− t1 1/2− t1 t1
1/2− t2 −t2 1/2− t2 t2
1/2− t3 1/2− t3 −t3 t3


for all vectors t = (t1, t2, t3) of 3 parameters. One can easily check that all
(3 × 3)-subdeterminants of H are ±4. For equality in (2.1) we need that
det(A(t)I) = 0 or sign(det(A(t)I)) = sign(det(HI)) for all I:
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I det(HI) det(A(t)I)
{1, 2, 3} 4 1

4(−t1 − t2 − t3 + 1)
{1, 2, 4} 4 1

4(t1 + t2 − t3)
{1, 3, 4} −4 1

4(−t1 + t2 − t3)
{2, 3, 4} 4 1

4(−t1 + t2 + t3)

These conditions yield the following inequalities on ti:
+t1 + t2 + t3 ≤ 1
+t1 + t2 − t3 ≥ 0
+t1 − t2 + t3 ≥ 0
−t1 + t2 + t3 ≥ 0

Observe that t1 = t2 = t3 = 0 is allowed and coincides with the case m = 3.
It is easy to see that the simplex T defined by the inequalities above has the
vertices given in Theorem 1.3 (see Figure 1).
Let v0, . . . , v3 be the vertices of T and let

A(t) :=

 −t1 1/2− t1 1/2− t1 t1
1/2− t2 −t2 1/2− t2 t2
1/2− t3 1/2− t3 −t3 t3


for all t = (t1, t2, t3) ∈ T .
Thus it remains to show that the set given in Theorem 1.3 also contains the
zonotopes corresponding to equivalent tranformations of H, i.e., we have to
show that the set is closed under negations of rows (i.e., reflections of the
zonotope with respect to coordinate hyperplanes) and interchanges of rows
of the generator matrix. The latter is easily seen, since t1, t2 and t3 can
be interchanged arbitrarily. Furthermore the transformations (t1, t2, t3) 7→
(t1, 1/2− t2, 1/2− t3), (t1, t2, t3) 7→ (1/2− t1, t2, 1/2− t3) and (t1, t2, t3) 7→
(1/2 − t1, 1/2 − t2, t3) reflect the zonotope with respect to the hyperplanes
x1 = 0, x2 = 0 and x3 = 0, respectively. �

Remark 3.1. Together with Remark 2.3 one can show that indeed, this
set contains also all zonotopes of minimal volume which do not contain all
vertices of C?3 as vertices. To do this, we have to find rows in A(t) which are
orthogonal to one of the coordinate unit vectors, say ej. This only happens
if t is contained in an edge of T and in this case, ej is contained in an edge
of Z(A(t)). The given set contains all possible ”movements” of ej along this
edge (cf. Figure 2).

In any facet-definining inequality of T equality is attained iff det(A(t)I) = 0
only for the corresponding I. Thus t being a vertex of T means that all but
one of the (3×3)-subdeterminants of A(t) are zero, i.e., one of the columns of
A(t) equals zero. Thus Z(A(t)) is a parallelepiped (cf. Figure 2, t = t0 = v0).
For t lying in the interior of an edge of T exactly two of the subdeterminants
are 0 and thus, there are two linearly dependent generators, i.e., the zonotope
is a parallelepiped as well (cf. Figure 2, t = t1 = 1

2(v0 + v1)). In the interior
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Figure 1. The simplex T in Theorem 1.3

v0 = t0

v1

v2

v3

t1
t2

t3

Figure 2. Minimal zonotopes in dimension 3 containing C?3

zonotope for t = t0 zonotope for t = t1

zonotope for t = t2 zonotope for t = t3

of a facet exactly one equality is attained, i.e., the corresponding zonotope
is a prism over a 6-gon (cf. Figure 2, t = t2 = 1

3(v0 + v1 + v2)). The interior
points of T correspond to a zonotope with 4 generators in general position
(cf. Figure 2, t = t3 = 1

4(v0 + v1 + v2 + v3)), the rhombic dodecahedron.
Observe that all these zonotopes are space-filling polytopes.
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Next we want to study our minimal zonotopes in view of Schneider’s question
stated in Problem 1.4. Schneider showed in [14] that any λ with C?n ⊆ Z ⊆
λC?n, where Z is a zonoid, satisfies

λ ≥ 2−n+1n

(
n− 1[
n−1

2

]) ∼√ 2
π

√
n.

For n = 3 this reduces to λ ≥ 3
2 , and next we calculate the factor λ for an

arbitrary Z in the set given in Theorem 1.3.
To this end we consider the following subdivision of the simplex T in Figure
3. Here the dividing planes are defined by midpoints of edges of T , facets

Figure 3. A division of the simplex T

of T and T itself. In formulas, we consider the following 4 parts:

• T1 := {(t1, t2, t3) ∈ T : t1 ≤ t2, t1 ≤ t3, t2 + t3 ≥ 1
2}

• T2 := {(t1, t2, t3) ∈ T : t2 ≤ t3, t2 ≤ t1, t1 + t3 ≥ 1
2}

• T3 := {(t1, t2, t3) ∈ T : t3 ≤ t2, t3 ≤ t1, t1 + t2 ≥ 1
2}

• T4 := {(t1, t2, t3) ∈ T : t1 + t2 ≤ 1
2 , t1 + t3 ≤ 1

2 , t2 + t3 ≤ 1
2}

In each part, the minimal value of the factor λ for Z(A(t1, t2, t3)) is affinely
linear in (t1, t2, t3), i.e., for (t1, t2, t3) ∈ Ti we get the following minimal
values for λ:

i λ
1 1 + 2(−t1 + t2 + t3)
2 1 + 2(+t1 − t2 + t3)
3 1 + 2(+t1 + t2 − t3)
4 3− 2(+t1 + t2 + t3) .

In particular we get the following values for the vertices of the division:
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vertices of T parallelepiped λ = 3
midpoints of edges of T parallelepiped λ = 2
midpoints of facets of T prism over a 6-gon λ = 5/3
midpoint of T rhombic dodecahedron λ = 3/2 .

Proposition 3.2. Only the rhombic dodecahedron is a minimal volume
zonotope containing C?3 as well as a solution to Problem 1.4 in dimension
3.

4. Arbitrary dimensions

Next we look at arbitrary dimension n. First we consider the special case
of zonotopes with generators in general position. The generators of an n-
dimensional zonotope are said to be in general position, if any n of them are
linearly independent.

Lemma 4.1. In even dimensions among all zonotopes that contain the
crosspolytope and whose generators are in general position only parallelepipeds
have minimal volume.

Proof. Let m > n and let A be an (n × m)-matrix such that Z(A) is a
minimal volume zonotope containing the n-dimensional crosspolytope and
let the generators of A be in general position. Furthermore let H be the
corresponding (m× n)-±1-matrix with A ·H = In and let the rows of H be
denoted by hi. By Proposition 2.4 we get that det(HI) = maxdet(n) for all
I ⊂ {1, . . . ,m} with #I = n. Thus hn+1 is a ±1-combination of h1, . . . , hn
since otherwise replacing hi, i ∈ {1, . . . , n}, by hn+1 in H{1,...,n} the abso-
lute value of the determinant would change. But this is a contradiction,
since a ±1-combination of h1, . . . , hn is a vector with even entries in even
dimensions. �

To deal with the general case, we consider the following lemma.

Lemma 4.2. Let A = (a1, . . . , an+1) be an (n× (n+ 1))-matrix of rank n.
Furthermore let aj 6= 0 for all j and let det(A{1,...,n}) 6= 0. Assume that
at most k of the (n × n)-subdeterminants of A are not 0. Then an+1 is
contained in the linear hull of k − 1 columns of A{1,...,n}.

Proof. Since a1, . . . , an are linearly independent, we have for I, J ⊂ {1, . . . , n}:

(4.1) lin{aj : j ∈ I} ∩ lin{aj : j ∈ J} = lin{aj : j ∈ I ∩ J}.

To see this let x ∈ lin{aj : j ∈ I} ∩ lin{aj : j ∈ J}, i.e.,

x =
∑
j∈I

αjaj =
∑
j∈J

βjaj .

Thus
0 =

∑
j∈I\J

αjaj +
∑
j∈I∩J

(αj − βj)aj −
∑
j∈J\I

βjaj .
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Hence αj = 0 for j ∈ I \ J and βj = 0 for j ∈ J \ I and thus x ∈ lin{aj : j ∈
I ∩ J}.
By assumption there exists an index set S ⊂ {1, . . . , n}, #S = n + 1 − k,
with det(A{1,...,n+1}\{s}) = 0 for all s ∈ S. Again since a1, . . . , an are linearly
independent we get that an+1 ∈ lin{aj : j ∈ {1, . . . , n} \ {s}} for all s ∈ S.
Together with (4.1) above an+1 ∈ lin{aj : j ∈ {1, . . . , n}\S} which completes
the proof. �

Remark 4.3. In particular we see that for such a matrix as in the lemma
above it holds: If det(AI) = 0 for all I 6= {1, . . . , n+ 1}\{l}, {1, . . . , n+ 1}\
{j} then al is a multiple of aj.

Lemma 4.4. If every ((n + 1) × n)-±1-matrix has at most two (n × n)-
subdeterminants that are maxdet(n), then all minimal volume zonotopes
containing the n-dimensional crosspolytope are parallelepipeds.

Proof. Assume all ((n + 1) × n)-±1-matrices have at most two subdeter-
minants that are maxdet(n). Let A = (a1, . . . , am) be an (n × m)-matrix
with m > n such that Z(A) is a minimal volume zonotope containing the n-
dimensional crosspolytope. Furthermore let H be the corresponding (m×n)-
±1-matrix with A · H = In. W.l.o.g. we assume that det(a1, . . . , an) 6= 0.
Now we consider A{1,...,n,k}, k > n. Since at most two subdeterminants of
H{1,...,n,k} are maxdet(n), at most two of the subdeterminants of A are not
0. Thus, by Remark 4.3, there exists a j(k) ∈ {1, . . . , n} such that ak is a
multiple of aj(k). Since this is true for every k > n, A consists of n linearly
independent generators and some multiples of them. This means that Z(A)
is a parallelepiped. �

Corollary 4.5. In dimensions where Hadamard matrices exist, all mini-
mal volume zonotopes containing the n-dimensional crosspolytope are paral-
lelepipeds.

Proof. Let n be a dimension where Hadamard matrices exist and let

H =

 h1

· · ·
hn+1


be an ((n+1)×n)-±1-matrix. W.l.o.g. let det

(
H{1,...,n}

)
= det

(
H{2,...,n+1}

)
=

maxdet(n). Thus H{1,...,n} and H{2,...,n+1} are Hadamard matrices and
hence, h1 and hn+1 are orthogonal to lin{h2, . . . , hn}. It follows that h1

and hn+1 are linearly dependent, and thus all other subdeterminants are
zero. The claim follows by Lemma 4.4. �

Proposition 4.6. For dimensions 4 to 18, 20 and 21 all ((n + 1) × n)-
±1-matrices have at most two (n× n)-subdeterminants that are maxdet(n).
Thus in these dimensions all minimal volume zonotopes containing the n-
dimensional crosspolytope are parallelepipeds.
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Proof. The computations in this proof were performed using MapleTM. To
check, whether there exists an ((n+ 1)× n)-±1-matrix that has more than
two (n × n)-subdeterminants that are maxdet(n) we used the following
computational approach: To every (n × n)-±1-matrix with maximal de-
terminant, we append every ±1-vector as (n + 1)st row. Thereby we con-
struct every ((n+1)×n)-±1-matrix with at least one subdeterminant being
maxdet(n). For all these matrices we calculate, how many subdeterminants
are maxdet(n). The following MapleTM-code does this for a previously given
maximal (n× n)-±1-matrix H:

with(LinearAlgebra):
maxdet:=abs(Determinant(H));
one:=Vector(n,1):
for i from 0 to 2^(n-1)-1 do
maxdet_set:={}:
zero_one_vector:=convert(Bits[Split](i,bits=n),Vector);
H0:=ScalarMultiply(zero_one_vector,2)-one;
B:=<H0|H>:
for k from 0 to n do
if abs(Determinant(DeleteColumn(B,k+1)))=maxdet then

maxdet_set:=maxdet_set union {k}:
end if;

end do;
if nops(maxdet_set)>2 then print(i,maxdet_set); end if;
end do:

Thus getting no output means that the matrix H cannot be submatrix of an
((n + 1) × n)-±1-matrix that has more than two (n × n)-subdeterminants
that are maxdet(n). Hence we need to do this for all different (inequivalent)
(n×n)-±1-matrices with maximal determinant. For example for dimension
5 there is only one of these matrices and the input file for this matrix H is
the following:

n:=5:
H:=<<-1,+1,+1,+1,+1>|
<+1,-1,+1,+1,+1>|
<+1,+1,-1,+1,+1>|
<+1,+1,+1,-1,+1>|
<+1,+1,+1,+1,-1>>:

We did this for all maximal matrices given in [10] from dimension 4 to 21.
Unfortunately in dimension 19 the maximal determinant is not known. �
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